DERIVING OPTIMAL KRYLOV SUBSPACE METHODS
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Abstract. We present a unified derivation of several optimal Krylov subspace methods for
solving linear systems of equations. Within a single framework, the methods of conjugate gradient,
conjugate residual, ORTHOMIN and ORTHODIR. are obtained when a particular choice is made
with respect to inner products or certain parameters.
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1. Introduction. Krylov subspace projection methods are efficient and popular
iterative methods for solving large sparse linear systems. Methods such as conjugate
gradient (CG) are routinely taught in numerical analysis classes and can be found in
most texts in numerical analysis/numerical linear algebra. There are several possible
ways to derive the CG method. One is based on generalizing the steepest descent
method through modifying search directions so as to obtain a globally optimal ap-
proximation (as in Golub and Van Loan [2] for example). Another one that is often
used is to derive it indirectly from the Lanczos algorithm, which involves quite heavy
algebraic manipulations (as in Demmel [1] for example). It is also possible to first
present the algorithm and then demonstrate its optimal approximation property (as
in Trefethen and Bau [4]). However, all these approaches could be challenging to
beginning students in the subject. Furthermore, for students going on to learn other
optimal Krylov subspace method such as conjugate residual (CR), ORTHOMIN and
ORTHODIR (see Saad [3]), it is probably not easy to make a connection among these
algorithmically similar methods that appear to have different origins.

In this article, we present a unified derivation of these methods that uses orily the
Gram-Schmidt orthogonalization. We shall first define an optimal Krylov subspace
method such as CG by its optimal approximation property in a certain inner product
and then proceed to construct the best approximation vector. With a particular choice
of the inner product or other parameters, the construction leads to one of the CG,
CR, ORTHOMIN and ORTHODIR methods. In this way, all these methods share a
common recurrence structure and the similarity found in them is easily understood.

We shall present the detailed construction for CG (the best known Krylov sub-
space method) in Section 2.1. We then show in later subsections that the other
methods can be obtained in the same framework of construction.

2. Optimal Krylov Subspace Methods. Consider the linear system Az = b
where A is a nonsingular n x n matrix and b € R"®. The k-th Krylov subspace is
defined as

Ky = span{b, Ab,---, A¥~1b}.

Throughout, we shall assume K,, has dimension n.
For an inner product [-, -] on R, we define an optimal Krylov subspace method
that generates the best approximation zy from the Krylov subspace Ky as follows.
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DEFINITION 2.1. AN OPTIMAL KRYLOV SUBSPACE METHOD in the inner prod-
uct [+, -] is to approzimate z = A™1b by a sequence {x}} such that

(2.1) zy € Ky and ||zx — || = min ||z — 2],
2EK

where || - || = [, ]*/? is the norm associated with |-, .
It is easy to prove that the optimal approximation condition (2.1) is equivalent
to the orthogonality (projection) condition

(2.2) zx—z L Ky, in[, ]

(i.e. [zx —x,2] = 0 for all z € Ki). This orthogonality property can be used in
place of (2.1) to define zx, and indeed it is this property that will be used in our later
derivation.

We discuss in the following subsections algorithms to compute zj, as defined above.
With different inner products, different methods are obtained. However, Our main
observation is that zx can be constructed in a single framework that is independent
of the inner product used. This framework of construction will be presented in the
context of CG in Section 2.1.

Although [+, -] can be any inner product in theory, it should certainly be one that
is computable in practice. Furthermore, for the reason that will become clear in our
construction of zj, we shall also require that

(2.3) [-, ] is such that [u, A~'v] is computable

for any u,v € R".

2.1. Conjugate Gradient Method. First, consider the case that A is sym-
metric positive definite and we use the inner product

[u,v] = uT Av,

(which satisfies (2.3)). In that case, the optimal Krylov subspace method of Definition

2.1 finds z € Kj to minimize the A-norm of the error z; — . We now derive a

recursive construction of z;. In the following, r, = b — Az is the residual of zj.
From (2.2) and Ky—1 C K, we have for k& > 2,

(2.4) T — Tp—1 = (g — ) — (Tp—1 — ) L Ki-1,

Since we also have zx — zx1 € K, the direction of zz — 24— is uniquely determined
by (2.4). Namely, if p; # 0 is any vector such that

(2.5) pr €Ky and pp L Kg—g,

Zr — Tr—1 and pr must be linearly dependent and there is some aj such that zy —
Tk-1 = QkPk, 1.€.

(2.6) Tk = Tg—1 + Uk Dk-

From the orthogonality (2.2), we have zy — £ = Zr—1 — © + arpr L pr € K&, which
implies
e meo1 — 2] [pe, AN ]

[Pk, P [Pk Pr]
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(2.7) ap =



We conclude that z; can be constructed from z;_; by (2.6), provided we have py.
Note that this is derived for k > 2; but for k = 1, (2.6) and (2.7) are still valid if we
take p1 € Ky (ie. p; = b) and set 2o = 0.

We now proceed to construct p,. We first observe that, if p;,ps, -+, pr—1 are
the vectors defined in the same way as py for the previous steps, i.e. p; € K; and
pi L Ki—1, then {p1,ps,---,p;} forms an orthogonal basis for K; (for 1 < i < k).
Such a sequence can be constructed by the Gram-Schmidt method. Specifically, if
P1,P2, ", Pk—1 have been constructed, p; can be obtained by picking a vector w with

(2.8) w € K and w ¢ Kr_1

and orthogonalizing it against the previous p;’s, i.e.,

k—1
(2.9) Pe=w+ Y vip; with 7= _lpi,
i1 [piap'i]

Now, w = Apg—; and w = b — Azp_; are two easily available choices for the vector
w; but there are others as well, e.g., w = Arg_s.

Up to this point, we have not used the particular inner product [u,v] = u¥ Av and
the fact that A is symmetric positive definite, which we shall exploit now. It turns
out, that if we choose w = rg_; = b — Azy..1, the Gram-Schmidt process (2.9) will be
significantly simplified. Indeed, for i < k — 2, we have Ap; € K1 and hence

(2.10) [pi,Te-1] = [pis A(z — z%-1)] = [Api, z — 251] = 0,
where we have used [u, Av] = uT 4% = [Au,v] and (2.2). Thus, (2.9) reduces to
(2.11) Pk = Tg-1+ Yk-1Pk~1-

This completes the construction of zj from x;_;. The algorithm defined by the
recurrences (2.6) and (2.11) is called the conjugate gradient (CG) method. We omit
a detailed statement of the algorithm.

Remark 1. Since we have used the particular inner product [u,v] = uTAv as well
as the symmetry of A only in (2.10) and subsequently (2.11), it is clear that the
constructions of xj by (2.6) and p; by (2.9) are valid for any other inner product and
for a general A.

Remark 2. Choosing a different w for (2.9) would lead to a different algorithm for
constructing the same z. For example, w = Api_1 can be used (see section 2.2); but
w = ri_1 appears to be the most efficient choice.

Remark 3. The constraint on the inner product (2.3) is to allow computation of oy
by (2.7).

Remark 4. If A is symmetric but indefinite, u” Av is no longer an inner product. In
this case, if we apply the CG recurrence and no breakdown (i.e. [p;, p;] = 0) occurs,
the above constructs z that satisfies the orthogonality (2.2).

2.2, Conjugate Residual and Symmetric ORTHODIR Methods. If A is
symmetric only, we can consider the inner product
[u,v] = uT A%v
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which satisfies (2.3). To construct py by (2.9), we first choose w = rp_; again.
Then, in this inner product, (2.10) is still valid as [u, Av] = [Au,v] holds. Thus,
we have (2.11). So, the exactly same recurrences as in CG (with the coefficients
@, Yk—1 computed in the new inner product [u,v] = uT A%v) computes the minimizer
of [z —z,2 — z] = ||Az — bl|2 over Ky, i.e., z1 € K that satisfies

[[Azy = bll2 = min Az — bl|s.

This is called conjugate residual algorithm [3, p.183], which is theoretically equivalent
to MINRES.

ALGORITHM 1. CONJUGATE RESIDUAL (CR):
Initialize: 29 =0, 79 = b, p1 = 710.
Fork=1,2,---
oy = [P, A" reo] _ pf ATy

[Pk px] P A2py,
Tk = Tk—1 + QiPk
Tr = TE—1 — apApg

vy = — [Pr.TR] _ PR AT
k [Pk, P Pl Apy

DPi+1 = Tk + VeDk
Remark 5. In this process, we have assumed that 7.1 satisfies (2.8) (i.e. rg—1 ¢
Kr—1). It is easy to see form the recurrence that this is the case if a; # 0 for all
1 <k—1.If ag—1 = 0, however, then

Th—1 = Th—2 ~ Qp_1 Apr_1 = T2 € Kp_1.
So, ;-1 can not be used to construct py and the process breaks down.

Remark 6. A more practical version of the conjugate residual algorithm is to compute
Apy, rather than py by Apgy1 = Ark + v Apr. The resulting algorithm requires one
multiplication by A at each iteration.

The possibility that the choice of w = rx; may fail leads us to consider choosing
w = Apk—1, which always satisfies (2.8). The resulting recurrence will be a bit more
complicated but does not have the problem of breakdown.

Let w = Apg—1 in the Gram-Schmidt process (2.9). We have, for 1 < k — 3,

(2.12) [pi, Apk—1] = [Aps, pr—1] = 0.
where we note that Ap; € Kr_2. Thus, (2.9) reduces to

(2.13) Pk = Apr—1 + Yr—2Pk—2 + Vh—1Dk—1.
This construction is the symmetric case of ORTHODIR, algorithm.

AvgoriTEM 2. SYMMETRIC ORTHODIR:
Initialize: £o =0, rg = b, p1 = 1p.
Fork=1,2 .-

[ps, A" 1] — Dr ATk_1
[Px Pk pl A?p;

Ty = Th—1 + QrPr
Ty =Th—1 — 0 Apg

G =

5 — _Ipe—1,Ape]l Pi_1 A%pi
k-1 (Pk—1,PE—1) P AZpr_1’
o = — peAnl _ PR A%m

(p,px] pip ’

Dr1 = APk + Vk—1Pk—1 + YDk



2.3. ORTHOMIN and ORTHODIR. If 4 is nonsymmetric, we can consider
the inner product

[u,v] = uT AT Ay

which satisfies (2.3). In this case, the derivation of Section 2.1 up to (2.9) is still
valid and the computed z; minimizes [z — 2,z — z] = ||Az — b||s over K. Then,
the recurrence using (2.6) and (2.9) with w = rx_; is called the ORTHOMIN (or
GCR) algorithm while the one using (2.6) and (2.9) with w = Apj_1 is called the
ORTHODIR algorithm (see Saad [3, p.183]). Unfortunately, with either choice of w,
the long recurrence can not be reduced to a short one in general as orthogonality like
(2.10) or (2.12) no longer holds. This is due to the fact that A is not self-adjoint in
the inner product [u,v]. If A is nonsymmetric but there is an inner product [u, v] such
that A is self-adjoint in it, then a short recurrence will be obtained. A preconditioned
CG algorithm, for example, can be derived in this way.

3. Conclusion. We conclude that optimal approximations zy from Krylov sub-
spaces in a general inner product can be obtained by a recursive update of zx and a
simultaneous construction of an orthogonal basis by the Gram-Schmidt method. If A
is self-adjoint in the inner product, the Gram-Schmidt orthogonalization reduces to a
short recurrence. For the inner products that we discuss in Section 2, this coincides
with the fact that A is symmetric.
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